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Abstract

We present a numerical formulation for the treatment of nonlinear instabilities in shock-free compressible turbu-

lence simulations. The formulation is high order and contains no artificial dissipation. Numerical stability is enhanced

through semi-discrete satisfaction of global conservation properties stemming from the second law of thermodynamics

and the entropy equation. The numerical implementation is achieved using a conservative skew-symmetric splitting of

the nonlinear terms. The robustness of the method is demonstrated by performing unresolved numerical simulations

and large eddy simulations of compressible isotropic turbulence at a very high Reynolds number. Results show the

scheme is capable of capturing the statistical equilibrium of low Mach number compressible turbulent fluctuations at

infinite Reynolds number. Comparisons with the entropy splitting technique [J. Comput. Phys. 162 (2000) 33; J.

Comput. Phys. 178 (2002) 307], staggered method [J. Comput. Phys. 191(2) (2003) 392], and skew-symmetric like

schemes [J. Comput. Phys. 161 (2000) 114] confirm the superiority of the current approach. We also discuss a flaw in the

skew-symmetric splitting implemented in the literature. Very good results are obtained based on the proper splitting.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear instabilities have been a major hurdle in turbulence simulations [5,6]. They become more

pronounced when high order non-dissipative methods are used in under-resolved simulations, where ali-

asing errors significantly increase. This is the typical situation in large eddy simulations (LES), where high
order schemes are preferred in order to keep truncation errors smaller than subgrid scale terms [7].

In incompressible simulations, instabilities were successfully suppressed without artificial dissipation by
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ensuring simultaneous discrete or semi-discrete conservation of mass, momentum, and kinetic energy in the

limit of zero viscosity [8]. This can be accomplished in spectral methods through de-aliasing of the nonlinear

products [9]. Alternatively, the convective terms in the momentum equation can be discretized with the
skew-symmetric or rotational forms without de-aliasing. This procedure is not always accurate, as reported

for the rotational form by Zang [10] and Horiuti [11]. For finite difference schemes, these forms can also be

applied for conservation [12], but the preferred alternative has been the use of staggered grid [13], which

also avoids the problem of even-odd grid decoupling of pressure [14]. A comparative study of all these

methods can be found in [15].

Generalization of the aforementioned methods to compressible flows has not been as successful

since discrete conservation of mass, momentum, and total energy do not guarantee numerical stability

[16]. Robust simulations have been limited to moderate Reynolds numbers. Feiereisen et al. [17]
showed that writing the convective terms in the momentum equation in skew-symmetric form ensures

that these terms do not artificially contribute to the global kinetic energy, as dictated by the con-

tinuous equations. The skew-symmetric splitting yielded relatively stable simulations for LES [18,19]

and DNS [20,21] of compressible isotropic turbulence with central high order compact schemes. For

pseudo-spectral collocation methods, Blaisdell et al. [22] showed that the skew-symmetric form reduces

aliasing errors compared to the so-called conservative and non-conservative forms. Satisfactory results

were obtained by applying this form to the convective terms in both momentum and energy equa-

tions. Ducros et al. [4] followed the same steps in a finite difference/volume context. In a different
study, Lee [23] reported instabilities if the total energy equation is employed instead of the internal

energy equation. More recently, Nagarajan et al. [3] applied the staggered scheme in [13] to the full

compressible equations and obtained better numerical stability properties compared to the collocated

version.

Another approach falls within the context of mathematical entropy conservation instead of energy

conservation or aliasing error minimization. Harten [24] showed how the Euler equations of gas dy-

namics can be written in a symmetric form cast in a new set of variables called the entropy variables.

The symmetric form has the benefit of conserving strong as well as weak solutions of the original
equations. Tadmor [25] extended the symmetric form to a skew self-adjoint form, when the entropy

function is homogeneous in the original variables. The skew self-adjoint form forces the new set of

equations to satisfy the global entropy conservation of the original Euler equations when considering

reversible closed systems. This result has been independently derived by Olsson and Oliger [26] using

non-homogeneous entropy functions. The skew self-adjoint form has been termed canonical splitting in

[26]. Gerritsen [27] and Gerritsen and Olsson [28] applied the canonical splitting to two-dimensional

compressible Euler equations with high order central-differencing. Yee et al. [1] showed that this splitting

reduces nonlinear instabilities for smooth flows as well as turbulent flows involving shocks. Sandham et
al. [2] obtained accurate results for compressible turbulent channel flow at low Reynolds and Mach

numbers. The canonical splitting was referred to as entropy splitting in [1]. The non-uniqueness of the

entropy function [24] makes this approach a function of a free parameter, b. As reported by Sandham

et al. [2], results can become unstable depending on the values of b. Also, the optimum b for stability is

a function of the problem being studied, which makes entropy splitting unattractive. Adaptive selec-

tion of b at each grid point as a function of the local Reynolds and Mach numbers is currently being

investigated [2].

All the methods mentioned above become unstable at increasing Reynolds numbers, even at small
turbulence Mach number and in the absence of shocks. We provide below a numerical formulation of

the Navier–Stokes equations that possesses excellent nonlinear numerical stability properties at high

Reynolds numbers. We first discuss the numerical implementation of the formulation and then show

through numerical experiments and comparisons with the work cited above how numerical stability is

enhanced.
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2. Numerical formulation

2.1. Mathematical equations

Consider the Navier–Stokes equations:

oq
ot

þ oqui
oxi

¼ 0; ð1Þ
oqui
ot

þ oquiuj
oxj

þ op
oxi

¼ osij
oxj

; ð2Þ
oE
ot

þ oEuj
oxj

þ opuj
oxj

¼ osijui
oxj

þ o

oxj
j
oT
oxj

� �
; ð3Þ

where

sij ¼ l
oui
oxj

�
þ ouj

oxi

�
� 2

3
l
ouk
oxk

dij and E ¼ q
uiui
2

þ qCvT : ð4Þ

In these equations, q is the density, ui is the velocity field, p is the pressure, T is the temperature, E is the

total energy, l is the molecular viscosity, j is the thermal conductivity, and Cv is the specific heat at
constant volume. Cv is assumed to be constant. The above equations are supplemented by the ideal gas law,

p ¼ qRT , and the viscosity power law, l=lr ¼ ðT=TrÞ0:76 [29]. Here, R is the ideal gas constant, lr and Tr are
reference viscosity and temperature, respectively. The Prandtl number Pr � Cpl=j is set to 0.7 and

c � Cp=Cv to 1.4; Cp is the specific heat at constant pressure.

The equations above can be combined to give the internal energy and entropy equations:
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Here, the internal energy per unit mass e is given by e ¼ CvT and the entropy s by

s ¼ Cv lnðpq�cÞ: ð8Þ

Multiplying (6) by 2s and (1) by s2, one obtains upon adding

oqs2

ot
þ oqs2uj

oxj
¼ 2s

T
sij

oui
oxj

�
þ o

oxj
j
oT
oxj

� ��
: ð9Þ

The convective terms in (6) and (9) are in divergence form, which implies that their contribution to the

volume averages qs and qs2 results in boundary terms. Also, the last two terms in (7) are easily shown to be

positive, which means that qs should not decrease in time in a periodic domain.
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2.2. Convective terms of the entropy equation

Applying a high order central scheme to the conservative form of the Navier–Stokes equations as written
in (1)–(3) can lead to numerical instabilities in DNS or LES of compressible isotropic turbulence

[17,20,30,31]. As mentioned in Section 1, these instabilities are lessened by preventing the convective term of

the momentum equation from artificially producing or dissipating global kinetic energy [17]. Looking at qs
in these unstable simulations, one would find that it decreases with time, which is a clear violation of the

second law of thermodynamics. This non-physical entropy loss can be traced to the convective terms.

Moreover, it is found that the contribution of these terms to qs2 is not zero as discussed in the last section.

We propose that forcing the nonlinear terms not to spuriously contribute to qs and qs2 will greatly enhance

the nonlinear stability properties of a numerical scheme. It is in this sense the phrase ‘‘entropy conserva-
tion’’ is used in this paper. The improvement is demonstrated for compressible isotropic turbulence sim-

ulations in the numerical experiments of the next section.

Assuming no time stepping errors, one approach to achieve the requirements above is to use the

entropy equation (6) instead of the internal or total energy equations. Furthermore, the erroneous

contribution to qs2 is nullified by writing the convective term in (6) in a skew-symmetric form as done by

Feiereisen et al. [17] for the momentum equation and by Blaisdell et al. [32] for both momentum and

scalar equations:

oqauj
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! 1

2
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: ð10Þ

With a ¼ s, (10) gives the modified form of the convective term in (6), which then becomes
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The contribution of the convective terms in (11) to both qs and qs2 can easily be verified to sum up to
boundary terms. Summing (11) over the volume and assuming summation by parts holds for the spatial

derivative operator (see below), the convective terms reduce to

X
j; outflow

qsuj �
X

j; inflow

qsuj: ð12Þ

To obtain the effect on qs2, one has to multiply (11) by 2s, use (1), and then sum over the volume. This also

yields boundary termsX
j; outflow

qs2uj �
X

j; inflow

qs2uj: ð13Þ

Therefore, given a numerical solution that satisfies (11), qs and qs2 are guaranteed not to be spuriously

affected by the convective terms, assuming no time stepping errors. We note here that this is the approach

used by [17] to show that qui and quiui
2
are not affected by the nonlinear term in the momentum equation in a

periodic domain. The procedure outlined above is easily carried when the variables are arranged on a

regular grid. The implementation on a staggered grid is outlined in [31].

For periodic domains, the summation by parts property takes the form

XN
j¼1

uj
dvj
dx

¼ �
XN
j¼1

vj
duj
dx

; ð14Þ
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and was shown to hold for central schemes by Mansour et al. [12]. We highlight the proof in Section 3.2.

For non-periodic boundary conditions, Strand [33] showed it is possible to construct finite difference op-

erators (central inside the domain and non-central near the boundaries) such that

XN
j¼1

hjuj
dvj
dx

¼ ujvjjNj¼1 �
XN
j¼1

hjvj
duj
dx

ð15Þ

is satisfied. Here hj are the weights of the inner product and are positive numbers. These weights have to be

used when summing over the domain in order to obtain (12) and (13).
2.3. Equivalent energy equations

An equivalent approach is to use the internal or total energy equations and modify their nonlinear terms

so that a proper combination of the working equations yields (11). This can be done as follows. Substituting

for s from (8) in (11) and ignoring the viscous terms, we get
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Substituting for oq=ot from (1)
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Adding the viscous terms and using p ¼ ðc� 1Þqe, we obtain another form of (5)
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It can be easily verified that (11) is the result of multiplying (18) by ðc� 1ÞCvqp�1 and adding to (1)

multiplied by ðs� cCvÞ. The following equation can be similarly derived for the total energy:
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Eqs. (11), (18), and (19) share the same nonlinear numerical stability properties. Also, these equations are

equivalent numerically for DNS and ‘‘no-model’’ calculations as long as time stepping errors are negligible.

For LES calculations, differences might arise depending on how the subgrid-scale model is implemented.

For problems involving shocks with fixed mean position, (19) might be useful if incorporated in a suitable

shock capturing scheme.
2.4. Skew-symmetric form

As mentioned earlier, the skew-symmetric form in (10) was discussed in the context of conservation by

Feiereisen et al. [17] and Blaisdell et al. [32]. However, this form was used differently by Blaisdell et al. [22]

and Spyropoulos and Blaisdell [30]. In these studies, the convective terms in (2) and (5) were discretized

according to
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oqauj
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oxj

ð20Þ

with a ¼ ui for (2) and a ¼ e for (5). The forms in (10) and (20) are not equivalent numerically in general.
For one thing, the boundary terms (13) do not follow if (20) is used, even if the convective term in (1) is

split. The reason for using this different splitting might have been that the aim in [22] was to minimize

aliasing errors and not to enforce conservation. It was found in [22] that the error in calculating the spectral

derivative of a product gh is reduced by using the form

ogh
ox

! 1

2

ogh
ox

þ g
2

oh
ox

þ h
2

og
ox

: ð21Þ

From this point of view, it does not matter how the derivative of a triple product is written, as long as it is

split according to (21). Setting g ¼ qa and h ¼ uj in (21) yields (20). Also, it is easier to calculate ðqeujÞ;j in a

spectral code using (20) since qe, and not e, is the variable being advanced in time. This splitting was

adopted for finite difference schemes by Ducros et al. [4]. Although the form (20) behaves better than the

divergence 1 and non-conservative 2 forms [22], it is less robust than (10), as seen in the next section.

Although there is no formal reason to use (10) in (5), it can be justified in the light of (11). The good

performance of this approach will be confirmed through numerical simulations below. We note that re-

casting the nonlinear terms of the total energy equation in the form (10) will not be successful [31]. The
proper method to derive a total energy equation that inherits the same stability properties of the internal

energy equation is by multiplying the modified form of (2) by ui and adding to the modified form of (5). By

modified forms of (2) and (5) we mean the convective terms are discretized using (10). The resulting total

energy equation is

oE
ot

þ ui
2

oquiuj
oxj

þ qujui
2

oui
oxj

þ 1

2

oqeuj
oxj

þ e
2

oquj
oxj
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2
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oxj
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ouj
oxj
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¼ sij
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oxj
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þ o

oxj
j
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� �
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Comparing to (3), we infer that the nonlinear terms in (22) are the result of applying the non-conservative

form to ½ðquiujÞui�;j and ðpujÞ;j and the skew-symmetric form (10) to ðqeujÞ;j. The difference in robustness
between internal and total energy formulations reported in [3,23] is reconciled with the procedure just

outlined.
3. Numerical simulations

In this section, we use compressible isotropic turbulence simulations to compare the numerical stability

of the formulations discussed in the previous section to the methods cited in Section 1.

3.1. Numerical methods

The different methods are labeled below, with method A representing the new formulation discussed in

the previous section.
1 Simply ðghÞ0.
2 ðghÞ0 ! g0hþ gh0.
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Method A: Eqs. (1), (2), and (18) are solved, with the form (10) implemented in (2). This method con-

serves q locally and qui globally in the limit of zero viscosity. In addition, quiui
2
, qs, and qs2 are not spuriously

affected by the nonlinear terms.
Method B: Entropy splitting technique in [1,2]. This method only conserves qes=bð1�cÞ globally in the limit

of zero viscosity. b was set to 2 as values around 2 were found to give the best results for most of the

simulations considered in this work.

Method C: Eqs. (1), (2), and (5) are solved with the convective terms discretized as in (10). This method

conserves q locally, qui and E globally in the limit of zero viscosity. In addition, quiui
2

is not spuriously

affected by the nonlinear terms.

Method D: Staggered method used by [3]. This method is attractive because it locally conserves q, qui,
and E while providing additional robustness compared to a collocated scheme using non-conservative
splitting of the nonlinear terms.

Method E: Eqs. (1)–(3) are solved. The convective terms in (2) are written according to (20) and those in

(3) according to (21). This scheme is similar to the skew-symmetric-like schemes suggested by Ducros et al.

[4]. Method E conserves q locally, qui and E globally in the limit of zero viscosity.

The third order Runge–Kutta time stepping scheme is used along with the sixth order compact finite

difference scheme [34]:

au0j�1 þ u0j þ au0jþ1 ¼ a
ujþ1 � uj�1

2D
þ b

ujþ2 � uj�2

4D
; ð23Þ

where a ¼ 1=3, a ¼ 14=9, b ¼ 1=9, and D the grid size. The test cases performed are similar to those per-

formed in [3,18,20,30]. The initial energy spectrum is given by

EsðkÞ ¼
16

3

ffiffiffi
2

p

r
M2

t0

k4

k50
e�2k2=k2

0 ; ð24Þ

where Mt0 is the turbulence Mach number and k0 is the most energetic scale in the initial field. The eddy

turnover time for this spectrum is s ¼ 2
ffiffiffi
3

p
=ðk0Mt0Þ. The initial density and temperature fields are uniformly

set to q0 and T0. The dynamic model is implemented according to [18,35]. The filter is the explicit seven

point least-squares filter derived in [30] and used by [3].

3.2. Summation by parts for central schemes

For explicit central schemes, e.g. the fourth order scheme

u0j ¼
�ujþ2 þ 8ujþ1 � 8uj�1 þ uj�2

12D
; ð25Þ

it is easy to show that the formula (14) holds by simply substituting for u0j and v0j from (25) and using the

periodicity condition. For implicit schemes, e.g. (23), the proof is carried as in [12,15] by using the Fourier

transform representation of uj and vj. With

uj ¼
XN=2

n¼�N=2þ1

ûnei2pjn=N ; ð26Þ

(23) yields the following formula for u0j:

u0j ¼
XN=2

n¼�N=2þ1

ik0ûnei2pjn=N : ð27Þ
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In the last two equations, ûn is the discrete Fourier transform of uj, i is the imaginary unit number, N is the

number of grid points in one direction, and k0 is the modified wavenumber of the difference scheme given by

k0 ¼ a sinð2pn=NÞ þ b=2 sinð4pn=NÞ
ð2p=NÞ½1þ 2a cosð2pn=NÞ� :

With some algebraic manipulations, (26), (27), and similar expressions for vj and v0j can be shown to satisfy

(14).

3.3. Validation

We first validate method A by performing DNS of compressible isotropic turbulence on a 643 grid with

Rek ¼ 30,Mt0 ¼ 0:3, and k0 ¼ 4. Similar parameters have been used in many studies, [21] among others, and

are deemed adequate for DNS. Comparisons are made against a spectral simulation conducted using a
specific volume formulation instead of a density formulation. As suggested by Lee et al. [36], this procedure

avoids the division operator and allows full de-aliasing. The evolution of the non-dimensional turbulent

kinetic energy and thermodynamic fluctuations versus time is shown in Fig. 1. The various non-dimensional

quantities are defined by: k0 ¼ ðu21;rms þ u22;rms þ u23;rmsÞ=ðc20M2
t0
Þ, p0 ¼ prms=ðcp0M2

t0
Þ, T 0 ¼ Trms=½ðc� 1ÞT0M2

t0
�,

and v0 ¼ vrms=ðv0M2
t0
Þ. Here v is the specific volume, v ¼ 1=q, and c0 is the speed of sound. The plots reveal a

very good agreement between the two methods for all statistics, and this validates method A. We note here

that increasing the grid to 1283 for method A would basically yield the same results.
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Fig. 1. 643 DNS, Mt0 ¼ 0:3, k0 ¼ 4, Rek ¼ 30, —: method A, s: de-aliased spectral.
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3.4. Unresolved simulations results

In order to test the nonlinear numerical stability of the different methods, we carry coarse grid isotropic
turbulence simulations at increasingly high Reynolds numbers, without any model. These kind of tests

provided to be useful for incompressible simulations, where stable schemes force the kinetic energy to decay

for finite Reynolds number and remain constant in the limit of zero viscosity. This behavior is predicted by

the incompressible equations, but not the compressible ones. Kraichnan [37], however, showed that there is
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an equipartition between the different energy modes of the truncated isothermal Euler equations at low

Mach number. For this purpose, we performed a fully de-aliased spectral simulation of the full Euler

equations on a 323 grid with Mt0 ¼ 0:07 and k0 ¼ 6 and ran it for a time of 20s. After a short transient, the
kinetic energy and thermodynamic fluctuations were found to decay for finite Rek and remain approxi-
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mately constant for very high Rek. The constant values were k0 � 1 and v0 � p0 � T 0 � 0:35. Moreover, it

was found that shocklets (regions where local Mt P 1) did not develop in these calculations. In fact, the

local Mach number was always below 0.2. Also, the spectral simulations would blow up for high Rek if de-
aliasing was not performed. Below, we use the simulations discussed here to investigate nonlinear numerical

stability properties of methods A, B, C, D, and E. We note that results from coarse grid simulations at high
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Reynolds number do not describe turbulence physics; a subgrid scale model has to be incorporated for this

purpose. However, these simulations provide a test for nonlinear numerical stability and the behavior of the

inviscid truncated equations can be predicted by means of statistical mechanics [38–40].
The non-dimensional turbulent kinetic energy k0 and density fluctuation q0 ¼ qrms=ðq0M

2
t0
Þ are shown in

Figs. 2 and 3 for several values of the Reynolds number. For method A, fluctuations decay at finite Rek and
reach an equilibrium at infinite Rek, in good agreement with the spectral results mentioned above. For

method B, kinetic energy always decays while density fluctuations greatly amplify for high Reynolds

number. An equilibrium is also attained at infinite Rek. The behavior and equilibrium values of method B do

not compare well with those of the de-aliased spectral method. In method B, there is a significant transfer of

energy from vorticity modes to entropy modes [41,42], that is from kinetic energy to density fluctuations.

This could be attributed to the lack of conservation properties in method B, which leads to wrong channeling
of energy. Also, it is found that high Rek simulations would blow up if b is changed to 1.8 or 2.2. Methods C,

D, and E yield negative density values for Rek greater than 500, 150, and 100, respectively. The instabilities

lead to kinetic energy increase in D but not in C or E. The five methods are differentiated in Fig. 4, where

results are plotted for Rek ¼ 200: For this Reynolds number, methods D and E are unstable. Methods A, B,

and C give identical results for the kinetic energy but not for the density fluctuations: q0 in method B suffers

from instabilities, which are less apparent in method C and absent in method A. Note that method C does

not perform well at high Rek. Similar trend in the results was obtained for a 163 grid.

For higher initial turbulent Mach number, shocks might eventually develop after several eddy turnover
times depending on the Reynolds number. Because of the low resolution and the absence of any shock

capturing scheme in the current simulations, instabilities build up and fluctuations diverge from the

equilibrium values. At infinite Rek, this occurs when Mt0 is around 0.2 for the spectral method and 0.09 for

method A with the sixth order compact scheme. For non-compact spatial schemes, the critical initial Mach

number will be lower for the same 323 grid: Mt0 is 0.07 and 0.05 for the fourth and second order schemes,

respectively. Also, the equilibrium values become less accurate for low order schemes. This behavior is due

to large truncation errors in these methods. The high order compact scheme used with the current entropy

conserving formulation represents the closest match to the de-aliased spectral method.

3.5. LES results

We next show LES results for Mt0 ¼ 0:3 and k0 ¼ 4. A spectral simulation with these parameters (with

the dynamic model computed in the physical space) would result in k0, T 0, v0, and p0 decaying at all Rek after
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a short initial transient. A stable finite difference scheme is therefore expected to yield a similar decay. The

non-dimensional temperature fluctuations T 0 are plotted for several values of the Reynolds number in

Fig. 5. After a small time, T 0 reaches a peak approximately equal to the equilibrium value of the previous
simulations. For method A, T 0 decays after the peak at all Rek. This is not the case for method B, where for

Rek > 103, T 0 reaches another peak before it finally decays. As in the previous case, method C gives very

satisfactory results. T 0 decays as in A as long as Rek < 105. For infinite Reynolds number, instabilities start
Fig. 7. Mt0 ¼ 0:3, k0 ¼ 4, —: model turned on, ––: model turned off.
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building up but very slowly. Method D become unstable for Rek > 2000 : T 0 gradually increases until a

negative density is obtained. Instabilities appear in method E at low Rek and grow at a very fast rate. A grid

refinement study with a 643 grid was done for method A . Results for the 323 and 643 grids are shown in
Fig. 6 and they compare very well.

In order to quantify the subgrid scale effects in these simulations, we show in Fig. 7 results with the

dynamic model switched off. In this case, the decay rates in T 0 are much slower and instabilities occur at

lower Reynolds number. For Mt0 ¼ 0:3, method A is no longer stable at infinite Rek, as discussed above.

Methods A, B, and C become unstable without the model for Rek > 104 while methods D and E for Rek
greater than 300 and 100. The growth of instabilities for method A is the least dramatic of all methods. The

difference between model and ‘‘no-model’’ results shows the significance of the subgrid scale dissipation.

However, the presence of subgrid scale model is not always sufficient to remove nonlinear instabilities. A
scheme with good conservation properties is necessary for simulations with low molecular and subgrid scale

dissipation.
4. Conclusion

We were able to use a high order compact central finite difference scheme to simulate compressible

turbulent fluctuations at very high Reynolds numbers without artificial dissipation or filtering. This was
accomplished by preventing the nonlinear terms from spuriously contributing to qs and qs2 through proper

implementation of the skew-symmetric form. Several other schemes were shown to be inadequate at large

Reynolds numbers. We also showed that using the skew-symmetric splitting for the purpose of reducing

aliasing errors in finite difference calculations is not always useful. Application of the methodologies dis-

cussed above to simulations involving shocks requires further investigation.
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